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Abstract

In this expository note, we sketch the proof [GM17, GH18] of the fact that a simple random walk
on the uniform infinite planar triangulation (UIPT) typically travels with graph distance n1/4+o(1) in n
steps. The proof builds on a detailed understanding of the mated-CRT map encoded by a SLE-decorated
LQG surface, together with a strong coupling between the mated-CRT map and the UIPT [GHS20]
inspired from the mating of trees theorem [DMS14].

1 Introduction

The uniform infinite planar triangulation (UIPT) (M, v), introduced in [AS03], is a random rooted infinite
planar map which serves as the local limit of rooted uniform triangulations (MN , vN ) with N vertices as
N → ∞. We consider a simple random walk {Xj}∞j=0 on M starting from v, and we are interested in the
asymptotic behavior of the traveling distance max1≤j≤n dist

M(v, Xj) as n → ∞ (here distM denotes the
graph metric on M). It was first conjectured by [BC13] and then proved in [GM17, GH18] that the traveling
distance in n steps is typically n1/4+on(1).

Theorem 1.1 ([GM17, GH18]). Let {Xj}∞j=1 be a SRW on M starting from v, then it holds as n→ ∞ that

P
[
max
1≤j≤n

distM(v, Xj) = n1/4+o(1)

]
= 1− o(1) ,

where P is taken with respect to the randomness of M and the random walk {Xj}∞j=1.

Throughout this note, we write γ∗ =
√

8/3, which is the LQG parameter that corresponds to the
continum limit of UIPT. We note that the exponent 1/4 in Theorem 1.1 is just 1/dγ∗ where dγ is the
Hausdorff dimension of the γ-LQG metric (which was shown to exist by [DG18]). We point out that an
analogous result holds for some other random planar maps, with modified choices of γ; see [GM17, GH18]
for these extensions.

We briefly sketch the main ingredients used in the proof. The key tool is a strong coupling between the
UIPT and the so-called mated-CRT map. The mated-CRT map, a C-embedded planar map, is encoded by
a γ∗-quantum cone, along with an independent whole-plane SLE curve. This coupling allows us to shift
our focus from the UIPT to the mated-CRT map. The mated-CRT map proves to be more tractable for
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two main reasons: (i) we can compare the graph distance with the Euclidean distance on mated-CRT maps,
thanks to the comparison results in [DG18]; and (ii) the Euclidean geometry of the mated-CRT maps can be
well-understood through the application of tools and results in the theory of LQG surfaces and SLE curves.

The note is organized as follows: in Section 2 we provide necessary preliminaries for the proof, and
in Section 3 and Section 4, we prove the lower and upper bounds in Theorem 1.1, respectively. We also
emphasize that, due to the expository purpose of this note, our focus will be on explaining the proof at the
conceptual level. Most technical details will be omitted, and we may simplify certain arguments for ease of
comprehension at the sacrifice of perfect precision—these instances will always be explicitly pointed out.

2 Preliminaries

In this section, we provide the essentials of the mated-CRT maps, and collect the main technical inputs for
the proof of Theorem 1.1.

2.1 The mated-CRT maps

Let (Lt, Rt)t∈R be a two-sided correlated Brownian motion on R2 with L0 = R0 = 0 and

Var(Lt) = Var(Rt) = |t|,Cov(Lt, Rt) = |t|/2 , ∀t ∈ R . (1)

For any ε > 0, we define a graph Gε with vertex set εZ as follows: for any x1 < x2 ∈ εZ, we let
(x1, x2) ∈ E(Gε) if and only if

inf
t∈[x1−ε,x1]

Lt ∨ inf
t∈[x2−ε,x2]

Lt ≤ inf
t∈[x1,x2−ε]

Lt ,

or this is true when the L’s are replaced by R’s. We note it follows from the scaling invariance of Brownian
motion, Gε has the same distribution with G1 for any ε > 0, and we will denote G = G1 for simplicity.
Indeed, it is true that Gε is almost surely planar, and it admits a canonical embedding into C, as discussed
below.

The construction of Gε is a discretization of the so-called mating-of-trees map introduced in [DMS14].
Therefore, there is a LQG/SLE description for the map Gε which we now discuss. Let (C, 0,∞, h) be a
γ∗-quantum cone with the circle-average embedding as defined in [DMS14, Section 4.3]. Basically, one
can think this as a random measure µh on C which has a certain scaling invariant property. In addition, we
consider a whole-plane space-filling SLE6 curve η parameterized such that η(0) = 0 and µh([x1, x2]) =
x2−x1 for any x1 < x2 ∈ R. We define a graph G̃ε with vertex set εZ = εZ such that for any x1 < x2 ∈ εZ,
(η(x1), η(x2)) ∈ E(Gε) if and only if the boundaries of the two cells η([x1− ε, x1], η([x2− ε, x2]) intersect
non-trivially. Quite remarkably, it turns out that Gε and G̃ε has the same distribution (the correlated Brownina
motion (Lt, Rt) can be realized by the length processes of the left and right boundaries of η([−∞, x]), x ∈
R, and G̃ε is obtained from the corresponding mating-of-trees map; see [DMS14, Section 8] for details).
Therefore, we will identify G̃ε with Gε, and henceforth as we mention Gε, we implicitly mean a planar map
on C with vertex set V(Gε) = εZ encoded by the pair (h, η) in the above manner.

2.2 Strong coupling

We now discuss the main tool that enables us to shift our attention from the UIPT to the (more tractable)
mated-CRT maps. The main input for constructing such a coupling is the observation in [BHS19] that the
UIPT can be encoded by a two-sided random walk on Z2 in a mating-of-trees manner (as the way G is
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encoded by the Brownian motion). It can be easily check that such a random walk has the same correlation
structure with the Brownian motion defined as in (1), and thus the coupling follows from the fact that random
walks can be strongly coupled with Brownian motions via the KMT theorem [KMT76].

To state the coupling result, we need to introduce several notations. For each n ∈ N, we denote Gn for
the induced subgraph of G on [−n, n]Z. We can also define a discrete version of Gn in the UIPT via the
random walk path-encoding given in [BHS19]. Roughly speaking, [BHS19] constructs an explicit “bijec-
tive” mapping from a certain type of two-sided random walk paths to the UIPT (here we use quotes since
the mapping therein is bijective in an almost surely sense), and thus we can identify the vertex set of M
with Z via this mapping. Furthermore, the mapping restricts on the part of path on [−n, n]Z yields a planar
triangulation Mn with boundary ∂Mn. Although it is not perfectly true that Mn equals to the subgraph of
M induced on [−n, n]Z, we can innocuously think this is indeed the case as the only difference happens on
the boundary ∂Mn, which is negligible compared to the whole Mn. Therefore, we can think of Mn as the
analogue of Gn in the UIPT.

More precisely, we have a sequence of planar maps Mn with v ∈ V (Mn) and such that Mn \ ∂Mn

embeds as a subgraph of M (with v ∈ V (Mn) maps to v ∈ V (M)). Moreover, we have a sequence of
almost bijective mappings ϕn : V (Mn) → [−n.n]Z, ψn : [−n, n]Z → V (Mn) with ϕn(v) = 0, ψn(0) = v,
and ψn ◦ ϕn ≈ IdV (Mn), ϕn ◦ ψn ≈ Id[−n,n]Z in a sense that will become clear in item (iii) of the following
theorem.

Theorem 2.1 ([GHS20], Strong coupling between mated-CRT and UIPT). Let Gn,Mn, ϕn, ψn be defined
as above, and note that ϕn : V (Mn) → V(Gn), ψn : V(Gn) → V (Mn). There are universal constants
C, p, q > 0 such that there exists a coupling between G and (M, v) with the property that for any n ∈ N,
with probability 1−O(n−10), the following hold:

(i) For any adjacent u, v ∈ V (Mn), there exists a path PGn
u,v on Gn from ϕn(u) to ϕn(v) with length at

most C(log n)p. Moreover, each edge in Gn is traversed by at most C(log n)q many such paths.

(ii) For any adjacent x, y ∈ V(Gn), there exists a path PMn
x,y on Mn from ψn(x) to ψn(y) with length at

most C(log n)p. Moreover, each edge in Mn is traversed by at most C(log n)q many such paths.

(iii) It holds that for any v ∈ V (Mn), distMn(ψn(ϕn(v)), v) ≤ C(log n)p, and for any x ∈ V(Gn),
distGn(ϕn(ψn(x)), x) ≤ C(log n)p , where distMn , distGn is the graph distance on Mn,Gn, respec-
tively.

2.3 Comparing graph metric with Euclidean metric

In light of Theorem 2.1, it is convincing that a good understanding of SRW on the mated-CRT maps also
sheds light on the SRW on UIPT. The virtue of working on the mated-CRT map is that the graph metric on
G has an explicit relation with the Euclidean metric under the canonical embedding η : Z → C defined as
before, which we now discuss.

For any ε > 0, recall the definition of Gε. For any domain D ⊂ C, we define Gε(D) as the subgraph
of Gε induced by the vertices x ∈ V(Gε) = εZ such that η([x − ε, x]) ∩ D ̸= ∅ (and we view Gε(D) as
the planar map in C embedded by η). In view of the scaling invariance of Gε, ε > 0, the relation between
graph metric and Euclidean metric of G is captured by the following result, which is a restatement of [DG18,
Proposition 4.6].

Theorem 2.2 ([DG18], Comparison between graph-metric balls and Euclidean balls). For any ζ > 0, there
exists α = α(ζ) > 0, such that for any ε > 0, with probability 1−O(εα), it holds that

BGε

ε−1/4+ζ (0) ⊂ V
(
Gε(B1/2(0))

)
⊂ BGε

ε−1/4−ζ (0) , (2)
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where BGε

r (0) denotes the metric ball on Gε centered at 0 with radius r, and Br(0) denotes the Euclidean
ball centered at 0 with radius r.

3 Proof of the lower bound

This section devotes to proving the lower bound of Theorem 1.1, that is, a SRW travels at least distance
n1/4−o(1) in n steps with high probability. The main ingredient is a Euclidean resistance estimate on the
mated-CRT maps. After proving this, we translate the estimate to the graph metric resistance of the UIPT
via Theorem 2.1 and Theorem 2.2. We then obtain the desired result from standard arguments of reversible
Markov chains.

In Section 3.1 we give the basic of resistance on electronic networks, then state the estimate for the
Euclidean resistance on mated-CRT maps and sketch the proof. In Section 3.2, we obtain estimation for the
graph metric resistance on the UIPT from results in Section 3.1 via the strong coupling. In Section 3.3, we
complete the proof of the lower bound by bounding the expected exit time of the graph-metric ball.

3.1 Resistance estimate: the Euclidean setting

Consider a locally-finite graphG, letXG be the SRW onG. For x ∈ V (G) and V ⊂ V (G) such that x /∈ V
and V (G) \ ({x} ∪ V ) is finite, we define the resistance between x and V as

RG(x↔ V ) = degG(x)−1Ex[#{times XG returns back to x before hitting V ] = degG(x)−1GrGτV (x, x) ,

where τV is the first hitting time of V and GrGτV is the Green function for the random walk killed at the
stopping time τV .

We will need the following two variational characterization of the resistance. The first approach involves
the Dirichlet energy.For a function f : V (G) → R, define its Dirichlet energy as

Energy(fV ;G) =
∑

(x,y)∈E(G)

(f(x)− f(y))2 . (3)

Dirichlet’s principle states that RG(x↔ V ) equals to supEnergy(fV ;G)
−1, where the supremum is taken

over all functions fV : V → R such that f(x) = 1 and f(y) = 0,∀y ∈ V (Indeed, the maximum is achieved
by the discrete harmonic function on V (G) \ ({x} ∪ V )).

The second variational characterization takes in terms of the unit flows. A unit flow from x to V is a real
function θ on the set of directed edges in G satisfying that θ(y, z) = −θ(z, y) for any (y, z) ∈ E(G) and∑

z∼y

θ(y, z) = 0, ∀y ∈ V (G) \ ({x} ∪ V ) , and
∑
y∼x

θ(x, y) = 1 .

By the Thomson’s principle, we have that

RG(x↔ V ) = inf

 ∑
e∈E(G)\E(V )

]θ(e)2 : θ is a unit flow from x to V

 . (4)

Recall the definition of Gε,Gε(D) for ε > 0 and D ⊂ C. Also recall that Br(0) is the ball centered at
0 with radius r, and we write Vε

r = V
(
Gε(C \ Br(0))

)
for simplicity. The following proposition estimates

the resistance between 0 and Vε
1/2 on the graph Gε.
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Proposition 3.1 ([GM17], Proposition 3.4). There exists α,C > 0 such that for any ε > 0, it holds that

P[RGε
(0 ↔ Vε

1/2) ≤ C log ε−1] ≤ 1−O

(
1

(log ε−1)α

)
.

Below we sketch the proof of Proposition 3.1. In the remaining of this section, we will always condition
on the realization of (h, η) (hence also the random planar map Gε). We will argue that provided (h, η)
satisfies certain nice conditions (which holds true with probability 1 − O(1/(log ε−1)α)), then RGε

(0 ↔
Vε
1/2) is bounded by C log ε−1. In light of Thomson’s principle (4), it suffices to construct a unit flow from

0 to Vε
1/2 that has energy (defined as in (4)) bounded by C log ε−1 under typical instances of (h, η). We now

state the construction given in [GM17].
We define a random path on Gε from 0 to Vε

1/2 as follows: pick a uniform point t on ∂B1/2(0), take
the line segment L joining 0 to t, and let P = {0 = x0, x1, . . . , xT } be the (directed) path on Gε such that
η([xi − ε, xi]), i = 0, 1, . . . , T are exactly all the cells that intersect L. It is clear that xT ∈ V since xT
corresponds to the cell that contains t. For a directed edge e in Gε, the flow function is defined as

θ(e) = P[P traverses e]− P[P traverses ē] (5)

where ē is the reverse of e. Here and below P is only the randomness coming from the choice of t, and we
will always implicitly work under the conditioning of (h, η).

Lemma 3.2. The function θ defined as in (5) is a unit flow from 0 to Vε
1/2.

Proof. θ clearly satisfies that θ(e) = −θ(ē) for any e. In addition, for any x ∈ V(Gε), it holds that∑
y∼x

θ(x, y) = E [#{y : (x, y) is traversed by P} −#{y : (y, x) is traversed by P}] ,

where the expectation is taken over the random path P . We note that for x = 0, the quantity in the expecta-
tion almost surely equals to 1− 0 = 1, and for x ∈ V(Gε) \ ({x} ∪ Vε

1/2), the quantity almost surely equals
to 1− 1 = 0. This verifies that θ is a unit flow from x to Vε

1/2.

By Thomson’s principle, Proposition 3.1 follows once we prove that∑
e∈E(Gε)\E(Vε

1/2
)

θ(e)2 ≤ C log ε−1 (6)

holds for typical realizations of (h, η). In what follows we explain in detail that a weaker version of (6)
holds true. Denote Ar1,r2(0) for the annulus centered at 0 with inner and outer radius r1, r2, respectively.
Then it follows that for some universal constants α, q > 0, with probability 1−O(εα) on (h, η),∑

e∈E(Gε(Aεq,1/2(0)))

θ(e)2 ≤ C log ε−1 . (7)

To facilitate the proof of (7), we need an additional technical input that for some universal constants
α, q′ > 0, with probability 1 − O(εα), the maximal diameter of the cell η([x, x − ε]) that lies in B1/2(0)

is bounded by εq
′

(see e.g. [GMS19, Lemma 2.4]). Conditionally on a realization of (h, η) with such an
event happens, recalling that L is the line segment joining 0 to the uniformly random point t ∈ ∂B1/2(0)
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and taking q to be slightly smaller than q′, we see that for any edge e = (x, y) in Gε(Aεq ,1/2(0)), one has
(below C denotes for some universal constant that might change from line to line)

|θ(e)| ≤ P[L ∩ η([x− ε, x] ∪ [y − ε, y]) ̸= ∅] (by the definition of θ(e))

≤ C

(
diam(η([x− ε, x]))

dist(η([x− ε, x]), 0)
+

diam(η([y − ε, y]))

dist(η([y − ε, y]), 0)

)
(by elementary Euclidean geometry)

≤ C

(
diam(η([x− ε, x]))

|η(x)| − εq′
+

diam(η([y − ε, y]))

|η(y)| − εq′

)
(by the cell-diameter control)

≤ C

(
diam(η([x− ε, x]))

|η(x)|
+

diam(η([y − ε, y]))

|η(y)|

)
. (by the choice that x, y ∈ V(Gε(Aεq ,1/2(0))))

Therefore, we conclude that under such a nice event, the left hand side of (7) is upper-bounded by

C
∑

(x,y)∈E(Gε(Aεq,1/2(0)))

[(
diam(η([x− ε, x]))

|η(x)|

)2

+

(
diam(η([y − ε, y]))

|η(y)|

)2
]

≤ C
∑

x∈V(Gε(Aεq,1/2(0)))

degG
ε
(x)

(
diam(η([x− ε, x]))

|η(x)|

)2

.

Ignoring the degree term, this appears very akin to a Riemann sum, and hence it is reasonable to expect
something like ∑

x∈V(Gε(Aεq,1/2(0)))

(
diam(η([x− ε, x]))

|η(x)|

)2

≲
∫
Aεq,1/2(0)

dx

|x|2
≤ C log ε−1 .

Moreover, one can expect that the additional degree term should not make things much worse, as it is
known that the degrees (as random variables) are typically of order O(1) and they all have exponential tails.
Intuitively, this gives the desired estimate (7), and indeed this can be made rigorous by applying [GMS19,
Lemma 3.1]. This concludes that (7) holds with high probability.

We conclude this section by a few words about how can one improve (7) to (6). Very roughly speaking,
this follows from a multi-scale analysis that takes advantage of the scaling property of the quantum cone.
On a very heuristic level, one can think the energy in each scale Aεkq ,ε(k−1)q(0), k = 1, 2, . . . , ⌈q−1⌉ is
approximately the same due to the scaling property, and thus (6) holds with C taken roughly as q−1C ′

where C ′ is the constant appearing in (7). The actual proof of (6) requires significantly more effort, and we
refer the interested readers to Section 3.3 of [GM17] for more details.

3.2 Resistance estimate: the UIPT setting

Recall that (M, v) is the rooted UIPT. For r ∈ N, we let BM
r (v) be the graph metric ball on M centered at v

with radius r. The main goal of this subsection is to prove the following resistance estimate for the UIPT:

Proposition 3.3. There are universal constants p, α, C > 0 such that for any r ∈ N, it holds with probability
1−O((log r)−α) that

RM(v ↔ (BM
r )c) ≤ C(log r)p .

Proof. The proof of Proposition 3.3 contains two main steps. The first is to derive a graph-metric ball
resistance estimate of the mated-CRT maps, and the second is to translate this estimate to the UIPT case.
The first step follows from Proposition 3.1 and the comparison result Theorem 2.2. The second step is
achieved by the strong coupling between mated-CRT maps and the UIPT (Theorem 2.1). We now elaborate
these two steps more precisely.
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Step 1: from Euclidean metric to graph metric. Recall that as in Theorem 2.2, we denote BGε

r (0) for
the graph metric ball on Gε centered at 0 with radius r. Fix some small constant ζ > 0, for any r ∈ N, we
let ε = ε(r) be such that ε−1/4+ζ = r. Since G has the same distribution with Gε, we have that

RG(0 ↔ (BG
r (0))

c)
d
= RGε

(0 ↔ (BGε

ε−1/4+ζ )
c) .

However, from Theorem 2.2 we know that for some α = α(ζ) > 0, with probability 1 − O(εα) it holds
that (BGε

ε−1/4+ζ (0))
c ⊃ Vε

1/2 (recall that Vε
1/2 = (V(Gε(B1/2(0))))

c). Then it follows from Proposition 3.1
together with the inclusion-monotonicity of resistance that, with probability

1−O(εα)−O(1/(log ε−1)α) = 1−O(1/(log r)α) ,

it holds that
RG(0 ↔ (BG

r (0))
c) ≤ C log r . (8)

Step 2: From mated-CRT maps to the UIPT. Recall the maps Mn and the mappings ϕn : V (Mn) →
V(Gn), ψn : V(Gn) → V (Mn) defined as in Section 2.2. We will need the following technical fact: there
existsK > 0 such that with probability 1−O(r−1) it holds that BM

r (v) = BMR
r (v), whereR = rK . In light

of this, Proposition 3.3 follows provided that RMR(0 ↔ (BMR
r (v))c) ≤ C(log r)p happens with probability

1−O(1/(log r)α) for some C, p, α > 0, which we argue as below.
Let (G,M) be jointly sampled from the coupling in Theorem 2.1. Assume that the pair (G,M) sat-

isfies that: (a) item (i)-(iii) in Theorem 2.1 holds for n = R, and (b) (8) holds for r replaced by R′ =
CKpR(log r)p (where C, p are the constants appearing in Theorem 2.1). We also note this happens with
probability

1−O(r−10K)−O(1/(logR′)α) = 1−O(1/(log r)α) .

Recall the Dirichlet energy characterization of resistance (3). For any function f : V (MR) → R
satisfying that f(v) = 1 and f(u) = 0,∀u /∈ BMR

r (v), define an associate function g : V(GR) → R as
g = f ◦ ψn. It is clear that g(0) = 1, and we conclude from Item (ii) in Theorem 2.1 that g(x) = 0
for all x /∈ BG

R′(0). Therefore, it follows from (8) (for r replaced by R′) and Dirichlet’s principle that
Energy(g;G) ≥ C−1(log r)−1. On the other hand, it is straightforward to check that Item (i) and Item (iii)
in Theorem 2.1 together imply Energy(f ;MR) ≥ C−1(log r)−p−q Energy(g;G). Applying Dirichlet’s
principle once again, this yields that RMR(0 ↔ (BMR

r (v))c) ≤ C2(log r)p+q+1, which gives the desired
estimate and thus completes the proof of Proposition 3.3.

3.3 Bounding the exit time of BM
r (v)

We conclude the lower bound in Theorem 1.1 from the next proposition together with Markov inequality.

Proposition 3.4. For any ζ > 0, let τn,ζ be the exit time of BM
n1/4−ζ (v) of the SRW on M. Then for any

ζ > 0, it holds for sufficiently large n that with probability 1− o(1) over (M, v), Ev[τn,ζ ] = o(n).

Proof. Fix n, δ > 0, and write r = n1/4−δ and τ = τn,δ for brevity. Note that for any u ∈ BM
r (v),

GrMτ (v, u) =
degM(u)

degM(v)
GrMτ (u, v) ≤ degM(u) · GrMτ (v, v)

degM (v)
= degM(u)RM(0 ↔ (BM

r (v))c) .

Summing over u ∈ BM
r (v), we get that E[τ ] ≤ RM(0 ↔ (BM

r (v))c) · 2#BM
r (v), which is bounded by

C(log n)p · n1−4ζ+o(1) = o(n) with high probability for large n, by Proposition 3.3 and a standard volume
estimate for the UIPT as in [Ang03, Theorem 1.2]. This completes the proof.
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4 Proof of the upper bound

In this section, we provide an outline of the proof in [GH18] that with high probability, the SRW on the UIPT
travels graph distance at most n1/4+on(1) steps in n units of time, thus completing the proof of Theorem 1.1.
This is done by first composing the rough isometry M → Gϵ provided by Theorem 2.1 with the embedding
x 7→ η(x) of Gϵ to obtain an embedding of (a large subgraph of) M into C. One important advantage
of this particular embedding is that the graph distance diameter (with respect to M or Gϵ) of the resulting
set of vertices contained in a fixed Euclidean ball is with high probability at most ϵ−1/4+oϵ(1). Under this
embedding, we assign a weight to each vertex that is roughly equal to the diameter of the corresponding
space-filling SLE cell, so that the resulting weighted graph distance approximates the Euclidean distance.
Section 4.3 gives an upper bound on the displacement of the SRW on M with respect to the weighted graph
distance and thus the Euclidean distance using Markov-type theory in Section 4.1. Finally, the comparison
between graph distance balls and Euclidean balls will complete the proof of the upper bound in Theorem 1.1.
We state the result here for later reference.

Theorem 4.1. Let (M,v) be the UIPT and let γ∗ be the corresponding LQG parameter, so that dγ∗ = 4.
For each ζ ∈ (0, 1), there exists α = α(ζ) > 0 so that for each n ∈ N, the simple random walk XM on M
satisfies

P
[
max
1≤j≤n

distM(XM
j ,v) ≤ n1/4+ζ

]
≥ 1−On(n

−α).

4.1 Markov-type inequality

A key step in the proof of Theorem 4.1 is to apply certain Markov-type inequalities proved in [DLP13].
We say that a metric space X = (X, d) has maximal Markov-type p if there exists a constant C such that
the following condition holds: for every finite set S, every transition matrix P of an irreducible reversible
Markov chain on S, and every function ϕ : S → X, we have that

E
[
max

0≤m≤n
d(ϕ(X0), ϕ(Xm))p

]
≤ CpnE [d(ϕ(X0), ϕ(X1))

p] .

We denote the optimal choice of C by Mp. A straightforward modification of the proof in [DLP13] implies
the following result.

Proposition 4.2. There exists a universal constant C such that every vertex-weighted planar graph has
maximal Markov-type 2 with M2 ≤ C.

Our goal is to use the preceding proposition to obtain a diffusivity estimate for the SRW on the UIPT, i.e.,
when p = 2, S = X = V(M) is the vertex set of the UIPT, ϕ is the identity function, and X is the SRW
on M. To do so, we must take a slight detour to introduce the notions of unimodularity and reversibility for
random rooted graphs. We recall that given a weighted graph (G,ω) and vertices v, w ∈ V(G), the weighted
graph distance is defined by

distGω (v, w) := inf
P

|P |∑
i=1

1

2
(ω(P (i)) + ω(P (i− 1))), (9)

where |P | is the length of the path, and the infimum is over all finite paths P in G from v to w.
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Definition 4.3. Let (G,ω,v) be a triple consisting of a connected locally finite graph, a nonnegative weight-
ing on the vertex set of G, and a marked vertex of G, respectively. We say that (G,ω,v) is a unimodular
vertex-weighted graph if it satisfies the mass transport principle: for each nonnegative Borel measurable
function F on the space of vertex-weighted graphs with two marked points (whose topology is taken to be
a natural generalization of the Benjamini-Schramm local topology [BS01]),

E

 ∑
u∈V(G)

F (G,ω,v, u)

 = E

 ∑
u∈V(G)

F (G,ω, u,v)

 .
Intuitively, this is saying that at the root vertex, “the expected mass coming in equals the expected mass
coming out.” Unweighted unimodular random rooted graphs are defined similarly.

Definition 4.4. Let (G,ω,v) be as in the preceding definition. We say that (G,ω,v) is a reversible vertex-
weighted graph if the following condition holds. Let ṽ be sampled uniformly from the set of neighbors of
v in G. Then (G,ω,v, ṽ)

d
= (G,ω, ṽ,v).

Remark 4.5. It follows from these definitions that if (G,ω,v) is unimodular and satisfies E[deg(v)] <∞,
then biasing the law of (G,ω,v) by deg(v) produces a random rooted graph which is reversible. Conversely,
if (G,ω,v) is reversible, then biasing its law by deg−1(v) produces a unimodular random rooted graph.

Recall that a percolation ρ on a unimodular random rooted graph (G,v) is a random subgraph of G,
where an edge is labeled 1 if it is included in the subgraph and 0 otherwise, so that the connected com-
ponent Kρ(v) of v is unimodular. A percolation is said to be finitary if Kρ(v) is almost surely finite. A
unimodular random rooted graph (G,v) is said to be hyperfinite if there exists an increasing sequence of
finitary percolations (ρn)n≥1 on (G,v) such that

⋃
n≥1Kρn(v) = V(G) almost surely. It is a fact that a

unimodular random planar map is hyperfinite if and only if it is a Benjamini-Schramm of finite planar maps
([AHNR18]). In particular, the UIPT is unimodular and hyperfinite.

The following corollary is a consequence of Proposition 4.2 that translates the Markov-type inequalities
to a diffusivity estimate of random walks on graphs.

Corollary 4.6. Let (G,v) be a hyperfinite, unimodular random rooted graph with E[deg(v)] < ∞ that
is almost surely planar. Let (XG

n )n≥0 be the simple random walk on G started from v. Let ω be a vertex
weighting of G so that (G,ω,v) is unimodular. Then

E
[
deg(v) max

1≤m≤n
distGω (v, X

G
m)2

]
≤ C2nE[deg(v)ω(v)2],

for every n ≥ 0, where C is the universal constant from Proposition 4.2.

To sketch a proof of this corollary, we first note that by the monotone convergence theorem and a
truncation, it suffices to consider any weighting ω that is almost surely bounded. Moreover, using the
hyperfiniteness of (G,v) (thus (G,ω, v)) and the dominated convergence theorem, it suffices to restrict to
any finitary percolation on (G,ω,v), which we denote by (GN , ωN ,v). A direct application of the mass
transport principle shows that conditional on the isomorphism class of (Gn, ωN ), the root v is uniformly
distributed on the vertex set of GN . It follows that if we bias the law of (GN , ωN ,v) by deg(v) restricted
to GN , then, conditional on the isomorphism class of (GN , ωN ), v is distributed according to the stationary
measure of the random walk on GN . This allows us to apply Proposition 4.2 to obtain that

E
[
degGN (v) max

1≤m≤n
distGN

ωN
(v, XGN

m )2
]
≤ C2nE[degGN (v)ωN (v)2].
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4.2 Vertex Weightings and Estimates

Recall that the coupling between the UIPT M and the mated CRT Gϵ in Theorem 2.1 is a rough isometry up
to a polylogarithmic factor. The SLE/LQG theory then allows us to embed Gϵ into C, where the Euclidean
distance becomes much more tractable than the original graph distance on M. Recall that given an interval
I ⊂ R and ϵ ∈ (0, 1), we have an obvious submap Gϵ

I of Gϵ induced by the vertex set I ∩ (ϵZ). As
described in Section 2.2, the case for M is slightly more complicated (see Section 2.5 of [GH18] for how
the “submap” MI is exactly defined), but we emphasize here again the important properties that we can
canonically identify MI \ ∂MI with a subgraph of M and that MI has a canonical root edge. For this
“almost inclusion” ιI : MI → M, one can also define the corresponding functions ϕI : (MI) → I ∩ Z and
ψI : I ∩ Z → V(MI).

Let Z = (L,R) : Z → Z2 denote the two-sided two-dimensional random walk which encodes the
UIPT decorated by critical site percolation via the discrete mating-of-trees bijection. Let Z = (L,R) be the
correlated Brownian motion defined in 1. Also recall from Section 2.1 that {Gϵ}ϵ>0 is the set of γ∗-mated
CRT maps with spacing ϵ constructed from Z, where γ∗ =

√
8/3 is the special parameter corresponding

to the LQG universality class of the UIPT. Let ((C, h, 0,∞), η) be the γ-quantum cone and space-filling
SLE6 curve determined by Z via the theory of mating of trees. We also assume that h is a circle average
embedding (see Section 2.3 of [GH18]) and that η is parametrized by γ∗-LQG mass with respect to h, so
that Gϵ is isomorphic to the adjacency graph of cells η([x− ϵ, x]) for x ∈ ϵZ.

Definition 4.7. For ϵ > 0 and a domain D ⊂ C, we denote by Gϵ(D) the subgraph of Gϵ induced by the set
of vertices x ∈ ϵZ with η([x− ϵ, x]) ∩D ̸= ∅.

A crucial property of the embedding x 7→ η(x) is that with high probability as ϵ→ 0, the maximal size
of cells that intersect a fixed Euclidean ball is of order ϵ2/(2+γ∗)2+oϵ(1). The following lemma quantitatively
describes this property, which will be useful later when we try to prove an upper bound for the Euclidean
displacement of the embedded walks.

Lemma 4.8 ([GMS19]). Using the above notations, for each q ∈ (0, 2
(2+γ∗)2 ), each r ∈ (0, 1), and each

ϵ ∈ (0, 1),
P[diam(η([x− ϵ, x]) ≤ ϵq, ∀x ∈ Gϵ(Br(0))] ≥ 1− ϵα(q,γ

∗)+oϵ(1),

where the rate of the oϵ(1) depends only on q, r, and γ∗ and α(q, γ∗) := q
2γ∗2

(
1
q − 2− γ∗2

2

)2
− 2q > 0.

The only property of α(q, γ∗) we will use is that it tends to ∞ as q → 0.
We now couple Gϵ and M together via Theorem 2.1 but with a specific choice of a sequence of intervals

{Iϵ} instead of using {[−n, n]Z}. The reason for doing so is that it allows us to more easily produce vertex
weightings on V(MIϵ) and V(Gϵ) which are reversible/unimodular, which in turn allows us to apply the
Markov-type inequalities introduced in Section 4.1. We also note that the coupling we are about to define
requires a slight modification of Theorem 2.1, but it easily follows by using translation invariance to transfer
the interval [−n, n]Z to Iϵ. To define {Iϵ}, we fix a large constant K > 1, which will eventually be chosen
depending only on γ∗. For ϵ ∈ (0, 1), let θϵ be sample uniformly from [0, ϵ−K ] and independently of
everything else. Then we couple Z and M using Theorem 2.1 for the interval

Iϵ = [aϵ, bϵ] := [−θϵ, ϵ−K − θϵ] (10)

and with n = ⌊ϵ−K⌋. The following lemma states that the random shifting θϵ makes the root edge e of MIϵ

uniform, which will subsequently help us check that a certain vertex weighting on V(MIϵ) is reversible. See
Section 3.1 of [GH18] for a proof.
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Lemma 4.9. The planar map MIϵ is almost surely determined by the translated random walk (Zt−θϵ −
−θϵ)t∈Z. Moreover, if we condition on the random walk/Brownian motion pair

((Zt−θϵ −Z−θϵ)t∈Z, (Zt−ϵθϵ − Z−ϵθϵ)t∈R)

and on the event {e ∈ E(MIϵ) \ E(∂MIϵ)}, then the conditional law of the root edge e is uniform on
E(MIϵ) \ E(∂MIϵ)

Recall the functions ϕIϵ : (MIϵ) → Iϵ ∩ Z and ψIϵ : Iϵ ∩ Z → V(MIϵ) corresponding to the ”almost
inclusion” ιIϵ : MIϵ → M. Define

ϕϵ := ϵϕIϵ : V(MIϵ) → V(Gϵ
Iϵ), ψϵ := ψIϵ(·/ϵ) : V(Gϵ

Iϵ) → V(MIϵ), Φϵ := η ◦ ϕϵ : V(MIϵ) → C.
(11)

The map Φϵ is the embedding of the map MIϵ into C that we will be mainly working with.
Our goal is to use the embeddings η : V(Gϵ) → C and Φ : V(Mϵ

Iϵ) → C to produce a unimodular vertex
weighting ωϵ

G on Gϵ and a reversible vertex weighting ωϵ
M on Mϵ

Iϵ to which the Markov-type inequalities can
be applied. For the ωϵ

G- and ωϵ
M-weighted distances to be close to the corresponding Euclidean distances, it

is natural to define these weightings so that

ωϵ
G(x) ≈ diam (η([x− ϵ, x])) , ωϵ

M(v) ≈ diam (η([ϕϵ(v)− ϵ, ϕϵ(v)])) (12)

However, there are two issues that we encounter. First, since the law of the pair (h, η) is not exactly invariant
under time translations (h, η) 7→ (h(· + η(t)), η(· + t) − η(t)) for t ∈ R, so the weightings in (12) are not
reversible for (M,v) or unimodular for (Gϵ, 0). Second, the boundaries of the cells η([ϕϵ(v)−ϵ, ϕϵ(v)]) and
η([ϕϵ(v′)−ϵ, ϕϵ(v′)]) corresponding to adjacent vertices v, v′ in V(MIϵ) need not intersect, and intersecting
cells need not correspond to adjacent vertices. Therefore, the Euclidean distance between the embeddings
of two vertices of V(MIϵ) might not be comparable to the minimal sum of the diameters of the cells along
a path in MIϵ connecting the two given vertices.

To circumvent the first issue, we will use a rescaled version of the translated pair (h, η) 7→ (h(· +
η(t)), η(· + t) − η(t)) whose law will be stationary in t by definition. For the second issue, note that the
coupling in Theorem 2.1 guarantees that cells corresponding to adjacent vertices of MIϵ cannot lie more than
polylogarithmic graph distance from each other in Gϵ, so we can use the Euclidean diameter of the union
of cells in a Gϵ-graph distance neighborhood of polylogarithmic size to dominate the Euclidean distance
between the embeddings of two adjacent vertices of V(MIϵ). After giving the precise definitions of these
modified weights, we will establish that their corresponding weighted distances are comparable to Euclidean
distances up to subpolynomial errors.

From [DMS14], we know that for each t ∈ R the shifted pair (h, η) 7→ (h(· + η(t)), η(· + t) − η(t))
agrees in law with (h, η) modulo rotation and scaling: for each t ∈ R, there exists a random constant ρt ∈ C
such that if

ht := h(ρt ·+η(t)) +Q log |ρt|, ηt := ρ−1
t (η(·+ t)− η(t)) (13)

then we have (ht, ηt)
d
= (h, η). Choose any p greater than the exponent of the polylogarithmic factor in

Theorem 2.1. For x ∈ ϵZ = V(Gϵ), we define the following translation-invariant weighting

ωϵ
G := max

1, |ρx|−1 diam

 ⋃
y∈V

(
BGϵ

(log ϵ−1)p
(x)

) η([y − ϵ, y])


 . (14)

11



We also define a weighting on V(MIϵ) by

ωϵ
M(v) := ωϵ

G(ϕ
ϵ(v)). (15)

With these weightings, we can deduce the following result on unimodularity/reversibility.

Lemma 4.10. The vertex-weighted graph (Gϵ, ωϵ
G , 0) is unimodular in the sense of Definition 4.3. Denote

M̊Iϵ := MIϵ \ E(∂MIϵ). Then, conditioning on the event that the root edge e is in E(MIϵ) \ E(∂MIϵ), the
vertex-weighted graph (M̊Iϵ , ω

ϵ
M,v) is reversible in the sense of Definition 4.4.

Proof. For the unimodularity of (Gϵ, ωϵ
G , 0), recall that for x ∈ V(Gϵ) = ϵZ we have (hx, ηx)

d
= (h, η).

Since the vertex-weighted graph (Gϵ, ωϵ
G , x) is constructed from (hx, ηx) in the same deterministic way that

(Gϵ, ωϵ
G , 0) is constructed from (h, η), we must have (Gϵ, ωϵ

G , x, 0)
d
= (Gϵ, ωϵ

G , 0,−x). Moreover, using the

invariance of the law of Z under time reversal, we also have (Gϵ, ωϵ
G , 0,−x)

d
= (Gϵ, ωϵ

G , 0, x). Then taking
expectation of any nonnegative measurable function verifies the mass-transport principle.

For the reversibility of (M̊Iϵ , ω
ϵ
M,v), note that Lemma 4.9 implies that conditioning on (MIϵ , ω

ϵ
M) and

on the event {e ∈ E(MIϵ) \ E(∂MIϵ)}, the root edge e is uniformly distributed on E(M̊Iϵ). It follows
that under this conditioning, v is sampled from the uniform measure on vertices of M̊Iϵ weighted by their
M̊Iϵ-degree, so (M̊Iϵ , ω

ϵ
M,v) is reversible. (Here we use Remark 4.5 and the fact that conditionally uniform

root implies unimodularity).

In the final preparation for bounding the Euclidean displacement of the embedded walks, we provide
two estimates for the weightings defined in (14) and (15). The first is a second moment estimate for the
weight functions at the root vertex, which will be helpful when we apply the Markov-type inequality in
Corollary 4.6 to bound the displacement with respect to the vertex-weighted graph distance.

Proposition 4.11. Let ωϵ
G and ωϵ

M be as in (14) and (15), respectively. Then for each ϵ ∈ (0, 1),

E[ωϵ
G(0)

2 degG
ϵ
(0)] ≤ ϵ1+oϵ(1), E[ωϵ

M(0)2] ≤ ϵ1+oϵ(1).

The reason for the exponent of ϵ in these bounds is that the root cell η([−ϵ, 0]) should look approximately
uniform among those in Gϵ which intersect the unit disk D. There should typically be of order ϵ−1 such cells,
so the expected Lebesgue measure of the root cell should be of order ϵ. Then standard SLE/LQG estimates
can be applied to show that, e.g., replacing the Lebesgue measure by the squared Euclidean diameter of the
root cell, taking the union of cells in a ball of polylogarithmic size, and weighting by degG

ϵ
(0), should not

affect the exponent. The details can be found in Section 4.1 of [GH18].
The following estimate concerns the distortion factor ρ−1

x , which appears in the definitions of the weight-
ings.

Proposition 4.12. Let ρt be the scaling factor defined in (13) for t ∈ R. Then there exists α > 0 such that
for each S > 1,

P

[
sup

t∈η−1(D)
|ρt| ≤ S

]
≥ 1−OS(S

−α)

and for each ϵ ∈ (0, 1),

P

diam
 ⋃

y∈V(BGϵ

(log ϵ−1)p
(x))

[y − ε, y]


 ≤ Sωϵ

G(x),∀x ∈ V(BGϵ

1/2(0)) ≥ 1−OS(S
−α)− o∞ϵ (ϵ),

where o∞ϵ (ϵ) means oϵ(ϵs) for all s ∈ R.
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This proposition follows from estimates for the circle average process of a GFF. The details can be found
in Section 4.2 of [GH18].

4.3 Upper bound on Euclidean displacement

Recall M̊Iϵ = MIϵ \ E(∂MIϵ) defined in Lemma 4.10. Recall also that for ϵ ∈ (0, 1), XGϵ
is a simple

random walk on Gϵ on Gϵ started from 0, and XM̊Iϵ is a simple random walk on M̊Iϵ started from the
root vertex v. Before stating the main result of this section, we first apply the Markov-type inequalities in
Corollary 4.6 to give an upper bound for the displacement of the SRW with respect to the vertex-weighted
graph distance. Let ωϵ

G and ωϵ
M be the weightings defined in (14) and (15). Recall also the definition of

weighted graph distance in (9)

Lemma 4.13. Denote dωϵ
G
:= distG

ϵ

ωϵ
G
(·, ·) and dωϵ

M
:= distM̊Iϵ

ωϵ
M
(·, ·). Then

E
[
max

j∈[0,n]Z
dωϵ

G

(
0, XGϵ

j

)2
]
≤ nϵ1+oϵ(1).

Moreover, write F ϵ := {e ∈ E(MI ϵ) \ E(∂MIϵ)}. Then the exponent K in (10) can be chosen large enough
and only depending on γ∗ so that P[F ϵ] ≥ 1−Oϵ(ϵ

100) and

E
[
1F ϵ max

j∈[0,n]Z
dωϵ

M

(
v, XM̊Iϵ

j

)2
]
≤ nϵ1+oϵ(1).

Proof. Using Remark 4.5 and Lemma 4.10, we know that (M̊Iϵ , ω
ϵ
M,v) biased by degM̊Iϵ (v)−1 is unimod-

ular. And since (Gϵ, ωϵ
G , 0) is also unimodular by Lemma 4.10, we can apply Corollary 4.6 to see that there

exists a universal constant C > 0 such that for every ϵ ∈ (0, 1) and every n ∈ N,

E
[
max

j∈[0,n]Z
dωϵ

G

(
0, XGϵ

j

)2
degG

ϵ
(0)

]
≤ nC2E[ωϵ

G(0)
2 degG

ϵ
(0)] (16)

and

E
[
max

j∈[0,n]Z
dωϵ

M

(
v, XM̊Iϵ

j

)2 ∣∣F ϵ

]
≤ nC2E[ωϵ

M(v)2|F ϵ]. (17)

Combining (16) and (17) with the second moment estimates for the weight functions at the root vertex
provided in Proposition 4.11 proves the lemma, except that we have to get rid of the conditioning in (17).
This can be done by choosing K large enough so that P[F ϵ] ≥ 1−Oϵ(ϵ

100). The details for estimating this
probability can be found in Lemma 1.11 of [GHS20] and Lemma 3.7 of [GH18].

The following proposition provides an upper bound on the Euclidean displacement the walks XGϵ
and

XM̊Iϵ . By taking the parameters ζ and ζ̂ to be small, we can interpret the proposition to mean that the
embedded walks typically take time at least ϵ−1+oϵ(1) to exit D. Recall the embedding Φϵ of MIϵ into C
defined in (11).

Proposition 4.14. For each ζ, ζ̂ ∈ (0, 1) with 2ζ < ζ̂, there exists α = α(ζ, ζ̂, γ∗) > 0 such that for each
ϵ ∈ (0, 1),

P

[
max

j∈[0,ϵ−1+ζ̂ ]Z

∣∣∣η(XGϵ

j )
∣∣∣ ≤ ϵζ

]
≥ 1−Oϵ(ϵ

α)

and

P

[
max

j∈[0,ϵ−1+ζ̂ ]Z

∣∣∣Φϵ
(
XM̊Iϵ

j

)∣∣∣ ≤ ϵζ

]
≥ 1−Oϵ(ϵ

α).
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Proof. The proof comes in two steps. First, we define a good event that happens with probability 1−Oϵ(ϵ
α).

Second, we show that on this event, the Euclidean distances can be bounded above in terms of the ωϵ
G- and

ωϵ
M-distances, so that Lemma 4.13 can be applied.

Step 1: definition of a good event. Let q := 1
(2+γ∗)2 . Let ζ, ζ̂ ∈ (0, 1) with 2ζ < ζ̂. Set δ := (ζ ∧ (ζ̂ −

2ζ))/100. Let Eϵ = Eϵ(ζ, ζ̂, q) be the intersection of the following four events.

1. Recall the notation Gϵ(B1/2(0)) in Definition 4.7. For all x ∈ V(Gϵ(B1/2(0))) we have

diam

 ⋃
y∈V

(
BGϵ

(log ϵ−1)p
(x)

) η([y − ϵ, y])

 ≤ ϵ−δωϵ
G(x).

2. Recall the notations in Lemma 4.13. We have

max
j∈[0,ϵ−1+ζ̂ ]Z

dωϵ
G

(
0, XGϵ

j

)
≤ ϵζ+2δ, max

j∈[0,ϵ−1+ζ̂ ]Z

dωϵ
M
(v, XM̊Iϵ

j ) ≤ ϵζ+2δ.

3. Each cell η([x− ϵ, x]) for x ∈ V(Gϵ(B1/2(0))) has Euclidean diameter at most ϵq.

4. The coupling conditions in Theorem 2.1 with the intervals Iϵ defined in (10).

By applying Proposition 4.12 with S = ϵ−δ, condition 1 can be satisfied except on an event of probability
decaying faster than a positive power of ϵ. The same is true for condition 2 by using Lemma 4.13 with
n = ⌊ϵ−1+ζ̂⌋ and applying Markov inequality (noting that ζ̂ > 2ζ+4δ). Using Lemma 4.8 and our choice of
coupling, respectively, we can also guarantee conditions 3 and 4. Therefore, there exists α = α(ζ, ζ̂, γ∗) > 0
such that P[Eϵ] ≥ 1−Oϵ(ϵ

α).
Step 2: Comparison of Euclidean and graph distances. Assume Eϵ occurs, and we will show that on this
event, the Euclidean distances of the embedded walks can be compared to the dωGϵ - and dωϵ

M
-distances. The

analysis for both cases is almost the same, and we will prove the harder case of dωϵ
M

.
Let v ∈ V(MIϵ) be any vertex so that Φϵ(v) ∈ D and let PM : [0, |PM|]Z → V(M) be any path in M̊Iϵ

from v to v. Note that the embedded path Φϵ(PM) may not be contained in B1/2(0), so we first work with
a portion of PM that is entirely contained in B1/2(0), in which case condition 1 applies. It turns out that
doing so gives an upper bound for |Φϵ(v)| only up to a constant multiple. To this end, let i∗ be the smallest
i such that Φϵ(PM(i∗ + 1)) ̸∈ B1/2(0), or let i∗ = |PM| if the entire path Φϵ(PM) is contained in B1/2(0).
Write v∗ := Φϵ(PM(i∗)). Note that by condition 3 we have either v∗ = v or |Φϵ(v∗)| ≥ 1/2− oϵ(1). Since
|Φϵ| ≤ 1, for ϵ small enough we have |Φϵ(v)| ≤ 4|Φϵ(v∗)|.

Recall that the coupling ϕϵ : V (MIϵ) → V(Gϵ
ϵIϵ) in Theorem 2.1 guarantees a path of length most

(log ϵ−K)p between each pair of vertices ϕϵ(PM(i − 1) and ϕϵ(PM(i)). Concatenating these paths and
noting that p is chosen to be larger than the exponent of the polylogarithmic factor in Theorem 2.1, we
obtain a path P Gϵ

in Gϵ from 0 to ϕϵ(v∗) satisfying

P Gϵ
([0, |P Gϵ |Z]) ⊂

i∗⋃
i=1

BGϵ

(log ϵ−1)p
(ϕϵ(PM(i))).

Since consecutive vertices in P Gϵ
correspond to adjacent cells, the above containment implies the upper

bound

Φϵ(v∗) ≤
i∗∑
i=1

diam

 ⋃
y∈BGϵ

(log ϵ−1)p
(ϕϵ(PM(i)))

η([y − ϵ, y])

 .

14



Since η(ϕϵ(PM(i))) = Φϵ(PM(i)) ∈ B1/2(0) for i ∈ [0, i∗]Z, we can apply the bound in condition 1 to see
that

|Φϵ(v∗)| ≤ ϵ−δ
i∗∑
i=1

ωϵ
G(ϕ

ϵ(PM(i))) = ϵ−δ
i∗∑
i=1

ωϵ
M(PM(i)).

Taking infimum over all paths PM from v to v in M̊Iϵ we have |Φϵ(v∗)| ≤ ϵ−δdωϵ
M
(v, v). Combining with

conditions 2 and 3 implies that if we apply this to any v = XM̊Iϵ

j for j ∈ [0, ϵ−1+ζ̂ ]Z, then for ϵ small
enough we have v∗ = v. It follows that

max
j∈[0,ϵ−1+ζ̂ ]Z

|Φϵ(XM̊Iϵ

j )| ≤ ϵ−δ · max
j∈[0,ϵ−1+ζ̂ ]Z

dωϵ
M
(v, XM̊Iϵ

j ) ≤ ϵζ+δ,

as desired.

4.4 Conclusion of the proof

In this section, we deduce Theorem 4.1 from Theorem 2.2 and Proposition 4.14. The overarching idea
is the following: to bound M̊Iϵ-graph distances, it suffices to consider Gϵ-distances by the coupling in
Theorem 2.1. Then Theorem 2.2 allows us to compare Gϵ-distances to embedded Euclidean distances, so
that Theorem 4.14 can be applied.
Proof of Theorem 4.1 Using Theorem 2.2 and Proposition 4.14, for each δ ∈ (0, 1), there exists α =
α(δ, γ∗) > 0 such that with probability 1−Oϵ(ϵ

α), the following events hold

Gϵ(B1/2(0)) ⊂ Bϵ
ϵ−1/4−δ(0), max

j∈[0,ϵ−1+δ]Z

∣∣∣η (XGϵ

j

)∣∣∣ ≤ 1

2
, max

j∈[0,ϵ−1+δ]Z

∣∣∣Φϵ
(
XM̊Iϵ

j

)∣∣∣ ≤ 1

2
.

Recall the functions ϕϵ : V(MIϵ) → V(Gϵ
Iϵ), ψ

ϵ : V(Gϵ
Iϵ) → V(MIϵ), and Φϵ = η ◦ ϕϵ defined in (11). If

the above events occur, then

ϕϵ
(
XM̊Iϵ

j ([0, ϵ−1+δ]Z)
)
⊂ Gϵ(B1/2(0)) ⊂ BGϵ

ϵ−1/4−δ(0).

Using condition 2 of Theorem 2.1, with probability 1− o∞ϵ (ϵ) we have that

ψϵ
(
BGϵ

ϵ−1/4−δ(0)
)
⊂ BMIϵ

ϵ−1/4−2δ−1
(v) =⇒ ψϵ

(
BGϵ

ϵ−1/4−δ(0)
)
⊂ BM̊Iϵ

ϵ−1/4−2δ(v).

Combining the two inclusions above and applying condition 3 of Theorem 2.1 we obtain that

P
[

max
j∈[0,ϵ−1+δ]Z

distM̊Iϵ
(
v, XM̊Iϵ

j

)
≤ ϵ−1/4−3δ

]
≥ 1−Oϵ(ϵ

α). (18)

We would like (18) to hold for M in addition to M̊Iϵ . This can be done by applying Lemma 1.11 of
[GHS20] to choose an exponent K in (10) large enough, depending only on γ∗, so that with probability
at least 1 − Oϵ(ϵ), the ”almost inclusion” ιϵ : MIϵ → M restricts to a graph isomorphism from BM̊Iϵ

ϵ−1 (v)

to BM
ϵ−1(v). Since XM̊Iϵ cannot leave BM̊Iϵ

ϵ−1 (v) in fewer than ϵ−1 steps, we see that (18) holds for M as
well. Choosing ϵ ∈ (0, 1) with ϵ−1+δ = n and δ ∈ (0, 1) small enough, depending only on ζ and γ∗, with
ϵ−1/4−3δ ≤ n1/4+ζ concludes the proof. □
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